Cancer classification based on gene expression using neural networks
نویسندگان
چکیده
منابع مشابه
Gene Expression Based Leukemia Sub-Classification Using Committee Neural Networks
Analysis of gene expression data provides an objective and efficient technique for sub-classification of leukemia. The purpose of the present study was to design a committee neural networks based classification systems to subcategorize leukemia gene expression data. In the study, a binary classification system was considered to differentiate acute lymphoblastic leukemia from acute myeloid leuke...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Gene Expression Based Cancer Classification
Gene expression profiles were shown to be useful in genomic signal processing when discriminating between cancer and normal (healthy) examples and/or between different types of cancer. K-nearest neighbors (k-NN) is one of the classification algorithms that demonstrated good performance for gene expression based cancer classification. Given that distance metric is fixed, the conventional k-NN ha...
متن کاملMulticlass Cancer Classification Using Gene Expression Profiling and Probabilistic Neural Networks
Gene expression profiling by microarray technology has been successfully applied to classification and diagnostic prediction of cancers. Various machine learning and data mining methods are currently used for classifying gene expression data. However, these methods have not been developed to address the specific requirements of gene microarray analysis. First, microarray data is characterized b...
متن کاملFacial Expression Classification Using Combined Neural Networks
Studies in the area of Pattern Recognition have indicated that a classification model performs differently from class to class. This observation leads to combining the individual results of different classifiers to derive a consensus decision. This work investigates the combination of classifiers in a facial expression recognition system. A classifier ensemble is then built by integrating the r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genetics and Molecular Research
سال: 2015
ISSN: 1676-5680
DOI: 10.4238/2015.december.21.33